
NASA Technical Memorandum 107402, Part 1
IEEE-155NO897-5000

Software Design Improvements
Part 1: Software Benefits and Limitations

Vincent R. Lalli

Lewis Research Center

Cleveland, Ohio

Michael H. Packard

Raytheon Engineers and Constructors
Brook Park, Ohio

Tom Ziemianski

Texas Instruments Inc.

Dallas, Texas

Prepared for
The International Symposium on Product Quality and Integrity

cosponsored by AIAA, ASQC/RD, ASQC/ED, IEEE/RS, IES, lIE,
SAE, SOLE, SRE, and SSS

Philadelphia, Pennsylvania, January 13-16, 1997

National Aeronautics and

Space Administration

J

SOFTWARE DESIGN IMPROVEMENTS

PART I -- SOFTWARE BENEFITS AND LIMITATIONS

1. INTRODUCTION

Computer hardware and associated software have been used

for many years to process accounting information, to analyze

test data and to perform engineering analysis. Now comput-

ers and software also control everything from automobiles to

washing machines and the number and type of applications

are growing at an exponential rate. The size of individual

programs has shown similar growth. Furthermore, software
and hardware are used to monitor and/or control potentially

dangerous products and safety-critical systems. These uses

include everything from airplanes and braking systems to

medical devices and nuclear plants. The question is: how can
this hardware and software be made more reliable? Also,

how can software quality be improved? What methodology

needs to be provided on large and small software products to

improve the design and how can software be verified?

Fig1. SOFTWARE BENEFITS

-Reduction in weight.

-Better system optimization.
-Autonomous action can be taken by software in emer-
gencies.

-More features are given to users of computer based
products.

-System capabilities increased with computers
(communication bandwidth, tuning precision, etc.).

-Better design analysis of system.

-Better knowledge of causes of system problems.

1.1. Software Reliability

Fig2. SOFTWARE RELIABILITY

-Software reliability is defined as the probability that the
software (actually the computer and its software) will
not cause a failure of a system, or that softwarewill not
cause unanticipated conditions that could result in the
loss of a system or subsystems.

Software reliability includes the probability that the program

(again thinking in terms of the computer and its software)

being executed will not deliver erroneous output. People have

come to trust computer generated results (assuming they

think the input data is correct). However, now we begin to

encounter problems. Recently a manufacturer reported that

its motherboards using a particular IDE (Integrated Drive

Electronics) controller "when using certain operating systems

have the potential for data corruption that could manifest

itself as a misspelled word in a document, incorrect values or
account balances in accounting software or even

corruption of an entire partition or drive." The potential for
data errors due to software embedded on certain Pentium

computer chips has also been discovered.1

1.2. Why Is This Important?

Fig 3. SOFTWARE'S IMPORTANCE

-Tremendous growth in use of software.
-Growth in use of software to control critical systems
(life supports, safety systems, aircraft, nuclear power
plants, etc.

-Mechanical interlocks are being replaced with software
interlocks.

-Lack of discipline in generating software now exists.

-Many critical accidents have been associated with soft-
ware.

-Growth in use to continue.

There has been tremendous growth in use of software to

control systems. Software has been used to control critical

life-support systems as well as flight controls on military and
civilian aircraft. Mechanical interlocks which prevent unsafe

conditions from occurring (such as disabling power when an

instrument cover is removed) are being replaced with

software controlled interlocks. At times a lack of discipline

in generating software has existed.

Fig4. SOFTWARE'S IMPORTANCE (Continued)

DEMAND, RISK and NEEDS:

General Bernard Randolph:

...demand for software used to control military and
aerospace is growing at 25% per year....

...[software's] cost and schedule growth are due to "a
failure of systems engineering and the requirements
process."

Critical to weight savings in systems.

Critical to eliminating the need of personnel who could
be used betterelsewherel

This growth will continue. General Bernard Randolph said
demand for software used to control military and aerospace

is growing at 25% per year and that cost and schedule

growth are due to "a failure of systems engineering and the

requirements process. "2 The size of the software also

continues to grow. From a "few" lines of code twenty years

ago to 500,000 source-lines-of-code (SLOC) for 9J_ the
flight software of the Space Shuttle 3 and 1.588 million SLOC

for the F-22 Fighter. 4

This software is critical to weight savings in systems. The

use of a computer system to control aircraft and spacecraft

has tremendous weight and cost advantages over conventional
electro-mechanical systems and has led to its rapid use and

acceptance. Software use is also critical for eliminating per-
solmel who could be used better elsewhere.

The application of software in the automotive industry has

gone from an eight bit processor controlling engine applica-
tions to a power PC to add more and more built-in diagnos-

tics, suspension controls, etc.

However, some problems have become apparent. There are

many potential and unrecognized pitfalls to the application of

softwarethatareonlynow being realized. Because of the

complexity of software, it has been cited that only 1% of

major software projects are finished on time and budget and
25% are never finished at all. 5 Also, people treat software

controls as a black box and often have not attempted to

predict the reliability and safety implications of their soft-
ware.

Many serious incidents in safety-critical applications may

have been related to software and the complex control

interfaces that often accompany software controlled systems.

One example occurred when, "in 1983 a United Airlines

Boeing 767 went into a four-minute powerless glide after the

pilot was compelled to shut down both engines." This was

due to a computerized engine-control system (in an attempt to

optimize fuel efficiency) ordering the engines to run at a

speed where ice buildup and overheating occurred. 6

A China Airlines A300-600R Airbus crashed in part because

of cockpit confusion. "Essentially, the crew had to choose

between allowing the aircraft to be governed by its automatic

pilot or flying it manually. Instead, they flew a half-way
measure, most probably because they failed to realize that
their trimmable horizontal stabilizer (THS) had moved to a

maximum nose-up deflection as an automatic response to a

go-around command. It was defeating their effort to bring the
aircraft's nose down with elevator control ,,7

Because of these problems we need to ask the following

questions: What computer system errors can occur? What are

the risks to the system from software? Why do accidents in-

volving software happen--from both the systems engineering
and the software engineering viewpoint? What are some

software reliability or (safety) axioms that can be applied to

software development? How can we be aware of the real

risks and dangers from the application of software to a con-

trol and sensor problem? How can the design of software be

improved?

1.3. Software Quality

Part I and II of this tutorial, "Software Benefits And

Limitations" and "Software Quality And The Design And

Inspection Process," will answer a number of questions.

Fig5. SOFTWARE TOPICS

1. Introduction - Software Reliability
2. Overview - How Do Failures Arise?

3. Types of Software
4. Examples of Computer System Errors

5. Sources of Error

6. Tools to Improve Software System reliability & Safety

7. Software Development Tools

8. Software System Axioms and Suggestions.
9. Conclusions
10. References

What are some useful software quality metrics? What tools

exist to improve software quality? What should specifications

for software contain? How are the quality and reliability of

software assessed? What would you specify to improve

software safety? What are the tools that affect software

reliability and how do they affect software quality? What are

factors that affect tradeoffs and costing when software quality

is evaluated? How do you improve software quality?

Software quality should also be defined in terms of correct-

ness, interoperability, flexibility, efficiency, validity and

generality. This will also be discussed.

1.4. Software Safety

Because of the often catastrophic effects of software errors,

software development is now a key factor affecting system

safety. Therefore, a system can only be safe if its software
can not cause the hardware to create an unsafe condition.

Software safety is the effective integration of software de-

sign, development, testing, operation and maintenance into
the system development process. A safety-critical computer

software component (SCCSC) is a computer software

component (processes, modules, functions, values or com-

puter program states) whose errors can result in a potential

hazard, or loss of predictability or control of a system.

System functions are safety-critical when the software opera-
tions that, if not performed, performed out-of-sequence or

performed incorrectly could result in improper control func-
tions that could directly or indirectly cause or allow a haz-
ardous condition to exist. How can this software be im-

proved?

2. OVERVIEW: HOW DO FAILURES ARISE?

?j \

t'
SOFTWARE

OPERATION

Fig. 6 -- Failure Origins

Generally, we can say that all failures come from the design

process, the manufacturing process or operation of the

equipment and in this case the computer, its associated soft-
ware and the system that it controls. Software is becoming a
critical source of failures--critical because failures often

come in previously unexpected ways. In the design of

mechanisms or structures, through a long history of the de-

sign process the type and severity of failures have become
well known. Hardware failures can often be predicted, in-

spections can be set up to look for potential failures and the
manufacturing process can be changed to make a mechanical

system more reliable.

In a mechanical system a small anomaly or error in the de-

sign or operation of a system often produces a predictable

and corresponding failure. Software is different. With soft-

ware, an incorrect bit, a corrupted line of code, or an error

in logic can result in disastrous consequences. Testing to

validate a mechanical system (though not perfect) can be set

up to validate "all" known events. On the other hand, soft-

ware with only a few thousand SLOC may contain hundreds

of decision options with millions of potential outcomes that

cannot all be tested for or even predicted. Also, historically

the design and behavior of mechanical systems have been

well known. Expanding the performance envelope of the de-

sign led to a new system that was similar to the old system.
The behavior of the new mechanical system was predictable.

This does not happen with software. With software, minor

changes in a program can lead to major changes in output.

2.1. Error Types

What are the types of errors that can occur with a computer

controlled system and where do they come from? There are

many sources of error (see Figure 7):

A hardware failure can occur in the computer itself, like

any other electrical device.

Hardware logic errors (in program logic controllers

(PLCs)) can be caused by mistakes in design or manufac-

ture.

Coding errors can occur in the program or the program can

become corrupted.

Requirements errors: missing, incomplete, ambiguous,

contradictory or incomplete specifications.

Logic errors in the program code can for a given set of in-

puts, cause the program to reach a state that was never
intended.

IARCHITECTURE

/ USER/

ATA /

;IRMWARE
CONTROL /

INTERFACE, /

SHIELDING /
/ ,

k____J

'WAR/_ATA, LOOK-_

UP TABLES _

Fig. 7-- Types of Errors

Corrupted data from partially failed sensors or internal

look up tables can have errors.

User interfaces problems can be extremely difficult to fred

(e.g., multiple points to turn off computer control of a

system, or keyboard buffers that are too small).

Faulty software tools (e.g., f'mite element structural analy-

sis code generation programs) with faulty logic and outputs.

The architecture of the computer can vary from platform to

platform and cause problems. Software verified on one

platform often behaves differently on another platform.

The interfaces between computers or computers and sensors

can be faulty or difficult to use.

2.2. Hardware/Software Failure Differences:

Fig8. HARDWARE & SOFTWARE FAILURE
DIFFERENCES

-Differences in methods of reliability prediction, inspec-
tion, testing between software and hardware compo-
nents.

-Due to nonphysical abstract nature of software which
are not based on cumulative damage.

- As a discipline, software reliability uses few of the tools
and methods that apply to hardware reliability.

There are vast differences between the methods used for

prediction, inspection, testing and verification of reliability in

software versus methods for system hardware components.

This is due to the nonphysical, abstract nature of software,

the failures of which are almost always information design

oversights or programming mistakes and are not caused by

environmental stresses or cumulative damage. Furthermore

the design rules for mechanical systems are usually well

known. A vast amount of historical data on similar systems is

available. Mathematical models of wear, fatigue, electrical

stress, etc are available to make life predictions. Each

software system is often unique_ Even with some code reuse,

complexity makes reapplication difficult. Some features of

software reliability compared to hardware reliability are

given in Table 2.2.

3. TYPES OF SOFTWARE

3.1. Based On Timing & Control

Fig9. TYPES of SOFTWARE Based On Timing/Control

-What is the allowability of real-time human assessment
of the system.

-What is the allowability of real time human interference
with the system.

-Is the software autonomous or informational.

-Is the software time-critical or non time-critical.

-Is the information provided general or of a critical na-
ture?

Software risks and impact on systems and data can be evalu-
ated based on what and how the software interacts with a

system, how humans interact with the system and the soft-
ware and whether or not this activity is carried on in real

time. Questions to be asked are: (1) Does the software con-

trol a system or does it just provide information? (2) Is real-
time human evaluation of output and interference allowed?

(3) Is the software output time-critical or non time-critical?

Table 2.2 - Hardware and Software Failure Differences

Category Hardware Software

Reliability Many mathematical models exist for predicting wear, Reliability predictions are nearly impossible due to the
Prediction Tools fatigue life and electronic component life. non-random distribution of errors.
Causes of Failures Wear-out, misuse, inadequate design, manufacture or Poor design affects software (The computer system on

maintenance or incorrect use can contribute to which the software resides can also fail).
failures.

Redundancy Hardware reliability is usually improved with Software reliability (except possibly for multiple voting
redundancy, systems) is not improved with redundancy.

Hard or Soft Soft failures (some degradation in service before Usually no soft failures occur (However, there may be
Failures complete failure) often occur due to wear, chemical some recovery routines that can take the system to a safe

action, electrical degradation, etc. state, etc.)
Maintenance Usually testing and maintenance improve hardware

and increase reliability.

Software reprogramming may introduce new and
unpredictable failure modes into the system. Reliability
may be decreased. Any change to the code should require

retesting ofthe software, but this is usually not
done.

Reliability Design theory, a history of previous systems and Software reliability is a function of the development
Prediction load predictions all allow excellent reliability process
Methodology predication.

(4) Is the data supplied by informational software critical or
non-critical? These issues are summarized in Table 3.1. Also

reference MIL-STD-882C, System Safety Program

Requirements, where types of software are based on levels of

control and hazard criticality.

3.2. Based on Run Methodology or Environment.

Fig.10. TYPES OF SOFTWARE Based On Environment

and Type of System Controlled

BASED ON ENVIRONMENT:

-Interactive

-Batch.

-Remote Job Entry.
BASED ON TYPE OS SYSTEM CONTROLLED:

-Embedded Software

-Applications Software

- Support Software

Another classification methodology of software is based on
how it is run:

Interactive implies a program that is continuously running

and interacting with the operator.

Batch implies a single run or process of a program (often

acting on data--such as a finite element analysis) where a

single output will occur.

Remote job entry implies a software environment where

programs are submitted or started by others, (at remote lo-

cations) again usually for a single output.

Finally, software may be classified according to the envi-
ronment in which the software operates. For example:

Embedded software is computer code written to control a

product; it usually resides on a processor that is part of the

product. Typical applications of embedded software in-

clude boiler controllers, washing machine computer con-

trols, automobile computer control, etc.

Applications software includes programs to analyze data. It

often runs as a batch job on a computer with limited input

from the user once the job is submitted. Typical applica-

tions include payroll systems, finite analysis programs,

material requirements planning (MRP) systems (updating

sections).

Support software tools may be thought of as another class

of programs. They are used to develop, test and qualify

other software products or to aid in engineering design and

development. Examples are compilers, assemblers, Com-

puter Aided Software Engineering Tools (CASE), etc.

4. EXAMPLES OF COMPUTER SYSTEM ERRORS

What are some examples of the problems that have been ob-

served with the application of software to control processes

and systems?

Fig. 11. EXAMPLES of COMPUTER SYSTEM ERRORS

RADIATION MONITOR

-Timing problem with data entry
-Hardware interlocks removed.

CHEMICAL PLANT

-Programmers did not understand process.
SPACE SHUTTLE

-Software revisions were not rechecked.

AIRLINER

-Personal compute shuts down navigationsystem

Here are some additional examples:

SPACE PROBE: Clementine 1, which successfuUy

mapped all of the Moon's surface was to have a close
encounter with a near-Earth asteroid. A hardware or

software malfunction on the spacecraft "resulted in a

sequencing mode that triggered an opening of valves for

Table 3.1 - Classification of Software Based on Level of Hazard and Control

Software

Control

Autonomous con-
trol exercised over

hazardous systems.
Semi-autonomous
control exercised
over hazardous

systems.

M/x of computer
and human control
over hazardous

systems.
No, but generates
information requir-
ing immediate
human action.

No, but human
action based on
information.

No, but human
action based on
information.

Information

Some information may be
available but insufficient for
real-time interference.

Real time information is
available to allow human/other

system interaction and control.

Real time information is
available to allow human
interaction and control. Human
control of some functions.

Complete real time information
presented to allow human
control over hazardous

systems.
Information presented non-real
time. Software does provide
critical information.

Information presented non-real
time. Software does not

provide critical information.

Human/Other Control Real

Interference Time

May be possible but not
desirable. Often no other
independent safety systems.
Possible and desirable under
some circumstances. Other

independent safety systems
or ability to disengage.

Yes, required for some sub-
systems of operation. Other
independent safety systems.

Human interaction required

to properly control the
system. Other independent
safety systems.
Human actions and decisions

are directly influenced by
information. Other checks.

Human actions and decisions

are directly influenced by
the information.

Examples

Yes Space shuttle main engine and solid
rocket booster ignition sequence.

Yes Aircraft terrain following system,
medication dispensing device, nuclear
power plant safety systems, automatic
go-around mode in aircraft (override).

Yes Aircraft fly-by-wire system of unstable
aircraft (example B-2) where computer
translates pilots control requests into
feasible flight surface modifications.

"Yes" Aircraft collision avoidance systems,
nuclear power plant instrumentation,
hospital patient vital signs.

No Statistical process control information
of machine tools, historical medical
information summaries.

No Financial and economic data.

four of the spacecraft's 12 attitude control thrusters,

allowing all of the hydrazine propellant to be used up."8

CHEMICAL PLANT: Programmers did not fully under-

stand the way a chemical plant operated. The specifications

stated that if an alarm occurred, all process control settings

were to be frozen. The resulting computer system released

a catalyst into a reactor and began to increase cooling water

flow to the reactor. While the flow was increasing the

system received an oil sump, oil low alarm and froze the

flow of cooling water at too slow a rate. The result was

that "the reactor overheated and the pressure release valve

vented a quantity of noxious fumes into the atmosphere."9

SPACE SHUTTLE: An aborted mission nearly occurred

during the first flight of Endeavor to rendezvous and repair
an Intelsat satellite. The software routine used to calculate

rendezvous firings "failed to converge to a solution due to a
mismatch between the precision of the state-vector tables,

which describes the position and velocity of the Shuttle."10

AIRLINER: A laptop computer used by a passenger on a
Boeing 747-400 flying over the Pacific caused the airliner's

navigation system to behave erratically. When the computer
was brought to the flight deck and turned on "the naviga-

tion displays went crazy."11

5. SOURCES OF ERRORS

Where do software errors come from. Rather than just

concentrating on concern for errors in the software logic, the

investigation as to sources of problems needs to be expanded.

Anytime an analog and/or electro-mechanical control system

is replaced with a computer system besides many unique

problems can occur.

5.1. Organizational Problems.

How do errors occur, what causes them and how can they be

eliminated? What are some of the procedures, organizational

arrangements and methodology that cause problems with
software?

• Communication Silver Bullets

• Documentation Personnel

• Standardization Software Reuse

• Configuration Management
ENGINEER

PROGRAMMER

Fig. 12 - Sources of Errors: Organizational Problems

(1) Communication:

Often there is a lack of communications and understanding
between the software programmer and the system or design

engineer. The designer does not understand the software and
the programmer does not truly understand the system with all

its potential failure modes (they do not have domain specific

knowledge). Programmers frequently fail to understand the

potential for problems if certain things are not done in a logi-

cal sequence. For example, "start heater and add fluids to

boiler" may be "logical" programming sequences, but what if

the computer has a fault after the heater is started, before

enough fluid is added to the boiler?

Design or safety engineers frequently do not understand

software and how it will control the system and the potential

for software problems. Often the computer and its software

are treated as a black box with no regard for the conse-

quences if the unit fails. In the past system safety engineers

have ignored software or looked at it superficially in analyz-

ing systems.

(2) Documentation:

There is a lack of software documentation standards, testing

and verification procedures. Practices such as not document-

ing the software analysis, inspection and test process or last

minute fixes without retesting and revefificafion cause many

problems. Lack of design and verification tools may exist.

Formal procedures for software inspection may be lacking or

the procedures may be in place but essentially ignored by the

software development group.

A potential flight problem was noticed on one experiment

scheduled to fly in space to evaluate the effects of micro-

gravity. To correct it the software was changed during a pre-
flight checkout on a holiday. The change was not verified.

During the mission, the heaters on a device would develop

only 25 % of the needed power. The simple software change
caused a the loss of some science data.

(3) Standardization:

There is a lack of software st_cmre standardization in many

organizations. Not requiring adherence to software standards

is an underlying contributor to many system failures. Trying

to be elegant in writing software, using complex techniques

and neglecting internal comments and written documentation

can seriously affect the quality of software. Lack of structure
standardization also lessens reuse of software as well.

(4) Personnel:

There is little attempt to keep good programming talent. A
turnover results in a loss of corporate knowledge. Changes in

personnel reduces reuse of code and causes problems when

maintaining software as well.

(5) Silver Bullets:

Over reliance on silver bullets to solve all a company's soft-

ware problems causes real issues to be overlooked. One of

the most difficult problems to deal with is unrealistic hope

that some advance in software development technology, some

new code generating tool or object oriented super code will

make software generation problems go away. This also mani-

fests itself when these state of the art techniques are exclu-

sively relied upon instead of using good documentation, for-

real requirements and continual interface between software,

design and safety personnel.

(6) Configuration Management:

There is often a lack of control over software changes both

during development and during maintenance of software.

Unauthorized changes in software or undocumented changes

in software put in by a programmer to fix a possible mistake

may cause many problems downstream. Toward the end of a

project pressure to just get the job done encourages code

changes without proper review or documentation.

(7) Software Reuse:

There is little attempt to reuse software. Many software pro-

grams are started from scratch (again with little control over

how the code is to be written). Note that attempts to reuse
code are often disastrous because of unknown defects.

5.2. Design and Requirements Problems

Besides organizational problems, poor analysis and flowdown

of requirements' specifications for an individual project can
cause errors, delays and cost overruns.

Fig. 13. SOURCES of ERROR: Design & Requirements

-Requirements

-Adding features

-Anticipating problems
-Software/Hardware interaction

-Isolating processes

These problems include:

(1) Requirements:

Poorly defined requirements for a specific software project

can cause a cost overrun and increase the probability that

code logic errors will be introduced. When real-time systems

are developed for new applications or applications outside the

normal areas of expertise of the software engineers, the need

for additional requirements to implement the basic system are

often needed. They are frequently discovered while the soft-

ware development process is well underway. Requirements

are often inconsistent, incomplete, incomprehensible, con-

tradictory and ambiguous as well.

(2) Additional Features:

Adding new features to the software is also major problem.

There is a perception that requirements for new features can
continue to be added long after programming has started with

little negative effect. But adding to performance requirements
has bad effects on system software. This addition of many

new requirements as the project progresses may be viewed as

a trivial problem by the design engineer but the software
must be changed for each new requirement. This adds to the

risk of increasing errors in the function or logic. The ques-

tion needs to be asked: Have the requirements been analyzed

as a complete set?

(3) Anticipating Problems:

There is often little attention given to protecting the software

controlled system from off-nominal environments. All the

emphasis is put into fulfilling performance requirements
without a careful analysis of what can go wrong with the

system.Littleattentionispaidtowhatstatesthesystemcan
reachthroughanunanticipatedseriesofevents.
(4)Software/HardwareInteraction:

There is often a lack of understanding of how the program

will actually run once a system is operational. There may be

problems with processing all the sensor data during a clock

cycle. The software may be unable to deal with changes in

physical conditions and processors.

(5) Isolating Processes:

Putting too many unnecessary software processes on a com-

puter controlling a safety-critical system can reduce assur-

ance that _ processes will be handled properly (safety-

critical refers to systems whose failures can cause loss of

life, loss of mission or loss of system).

5.3. Other Problem Areas

Problems with the software code are not our only concern.

The associated hardware, sensors and interfaces can also

pose special risks. Incorrect data, the reliability of the system

itself and the production, distribution and maintenance of

software are also problems.

Fig.14. SOURCES OF ERROR: Other Areas

-Reliability

-System/Sensor Interfaces

-Radio Frequency (RF) Noise

-Maintenance and manufacturing problems.

(1) Reliability:

The reliability and survivability of the computer hardware,

sensors, and power supplies are often not adequately planned

for. The Central Processing Unit (CPU), memory or disk

drives of a computer can fail. The system can lose power.

Excess heat or voltage spikes can also cause unanticipated er-

rors in performance, output or complete system shutdown.

(2) System/Sensors Interfaces:

The interfaces between sensors and other mechanical devices
can fail. Cables can become damaged and power supplies to

sensors or servo-controllers can fail. Often the anticipation of
these events and effective solutions are not handled ade-

quately.

(3) RF Noise:

The effect of radio frequency (RF) noise on computers, on

signals from sensors, and on components with damaged or

incorrect grounding and shielding is often not anticipated.

RF noise can affect the operation of a computer processor,

its memory and input/output devices as well. RF noise can

also affect sensors, poorly shielded cables, connectors and

interface boards (e.g., fiber optic to digital conversion, etc.).

This can cause errors or erroneous readings.

(4) Manufacture and Maintenance:

Proper manufacture, reproduction and distribution of soft-

ware are not always handled properly. This results in compi-

lation errors and improper revisions of code being distrib-

uted. Integration problems can occur during the assembly of

code, linking program modules together and transferring

files. Poor control over maintenance upgrades of software

and fkrmware also causes problems. Errors can result from

improper loading of programs, wrong batch files and patch-

ing to the wrong revision of software, etc.

Another classification of errors comes from a Rome

Laboratories study and is shown along with their percentages

of occurrence in Table 5.3. The study also shows the impor-
tance of interface design and documentation. 12

Fig. 15 -- Sources of Errors by Percentage

Source of Error Percent

Logic 21.29

Input/Output 14.74
Data Handling 14.49

Computational 8.34
Preset database 7.83
Documentation 6.25

User Interface 7.70
Routine to Routine Interface 5.62

6. TOOLS TO IMPROVE SOFTWARE SYSTEM

RELIABILITY & SAFETY

For each of the aforementioned problem causing agents,
there is a way to minimize risk and even eliminate to prob-
lem.

PROGRAMMER ENGINEER

Fig. 16 -- Tools to Improve Software System Reliability &
Safety

They are as follows:

6.1 Organizational Improvement

Various tools and techniques (some of which have been

briefly mentioned) when properly applied and supported at
all levels of the organization can do much to improve reli-

ability and safety of software.

(1)Communication:

Improve communication between designers, software engi-

neers and safety engineers through concurrent engineering

and safety review teams and joint training. Concurrent engi-

neering with regular meetings between design and software

engineering to review specifications and requirements will do

much to improve communications. Continuous discussions

with the end users will also improve understanding of the

background of the various system performance requirements.

Joint training and cross training will encourage developing

informal relationships and informal communication. Software

safety review committees made up of design, software and

safety personnel who continually meet to review specifica-
tions and implementation of software will help to assure that

safety-critical software performs properly. Also, specifica-

tions have to be carefully written, not just in "legal" terms

but clearly describing how the system should work. This will

convey the maximum amount of information.

(2) Documentation:

Improve software documentation standards, testing and veri-

fication procedures. Encourage the application of standands

for all software projects. This includes general requirements

for all system development projects, which industry or mili-

tary standards will be followed and what specific documents

are to be generated for any specific product. These docu-

ments may include a software management plan, a software

assurance plan, a software configuration management plan,

software requirements' specifications, a software test plan

and a software version description document (see Section II

for more details).

(3) Standardization:

Set and enforce software structure standards. The software

must be structured with good specifications as to what is and

what is not allowed. The programmer should not design

some "clever" program that cannot be readily understood or

debugged. Enforce safe subsets of programming language,

coding standards and style guides.

(4) Personnel:

Provide incentives to keep good programming talent and

maintain the corporate knowledge base. There should be a

mix of programming skills & experience. The ability to

transmit practical programming knowledge to new program-
mers who only have classroom training with little or no in-

sight into real world problems is very important. Keeping

senior programmers or senior managers who can review
software and participate in Independent Verification and

Validation (IV&V) of software across missions or products is
also of real benefit. Efforts should also be made to retain

workers who know the software systems to support software

maintenance and new applications of the code. Also, provide

training in proper methodologies.

(5) Silver Bullets:

If the introduction of major changes in the procedures for

generating software is contemplated, they must be review

with great care. Their impact on the software personnel,
maintenance of software and software standardization must

be evaluated carefully. Projects already underway and pro-

jects scheduled to be started may or may not benefit from the

change. Major disruptions to personnel can result. As with

any major change in the way a product is designed and de-

veloped, careful and complete training of personnel, a free

flow of information on the new system, assurances as to sup-

port of existing programmers and gradual introduction of the
new methods (e.g., starting on one small project, etc.) is re-

quired.

(6) Configuration Management:

Implement consistent controls over software changes and the

change approval process. This can be accomplished with a

variety of software development products including software

configuration management and code generation tools.

Computer Aided Software Engineering (CASE) tools and

other configuration management techniques can automatically

compare software revisions with previous copies and can

limit unapproved changes to software. Other programming

tools provide mission simulation and module interface docu-
mentation.

Software should also be modularized to facilitate changes and
maintenance. The software modules should have low cou-

pling (the number of links between modules shall be mini-
mized) and the software modules should have high-cohesion

(the level of self-containment).

Use a "clean room approach" to develop software. This

implies a highly structured programming environment and

tight control of the specifications for the software and sys-
tem. It also implies support and adherence to the software

analysis specifications.

(7) Software Reuse:

Encourage reuse of software with strict controls over soft-
ware structure and procedures for code reuse. Software

modules/software reuse also improves reliability. Reused

code benefits from faults removed in prior usage.
Modularized software with well documented and verifiable

inputs and outputs also enhances maintainability. Lewis

Research Center's (LeRC's) launch vehicle programs are
reused for each mission with only minor modifications. This

has achieved excellent reliability results.

6.2. Design and Requirements Improvements

The hardware and the software must be integrated to work

together. This integration includes the entire system with in-

put sensors and signal conditioners, analog to digital (A/D)

boards, the computer hardware/software itself and the output
devices (control actuators, etc.). Basic design methodology

can improvesoftwareas well. Somebasicapproaches
supportingthisconceptareasfollows:

(1)Requirements:

Spend sufficient time defining and understanding require-

ments. The system, software and safety engineers should

spend an adequate amount of time working with the end user

to both develop requirements, be able to express the re-

quirements in mutually understandable language and to have

requirements that are testable and verifiable.

(2) Additional Features:

Limit changes in requirements once the software design proc-

ess starts. The question needs to be asked: Is this additional

really a necessary requirement? Instead, functionality should

be reduced if necessary to achieve safety and basic perform-

ance goals. A huge number of ancillary, non-critical devices

and special graphical user interfaces may not be necessary

and only complicate and slow the system.

Put software in its proper place of importance. Many people

over confidently think, if a computer with its software is

controlling a system, it can never fail. They will believe

computer controlled readouts instead of their own senses.

This has given people a false sense of security.

(3) Anticipating Problems:

Fully analyze all the ways the software controlled system can

fail. What undesirable states can the system reach? Once this

is done procedures and methods can be implemented to make
sure these undesirable states and failure modes cannot be

reached. Make sure that they are not attainable through some

unusual (though not impossible) combinations of software

states, environment and/or input data. Then the system will
not be vulnerable to these failures.

While software does not degrade, it is virtually impossible to

prove the correctness of large, complex, real-time systems

(however, selective use of logic engines can be effective in

reducing uncertainty about a systems performance). Error

detection, correction and recovery software development are

also necessary to achieve fault tolerance. Examples of
common errors include inconsistent data in databases,

process deadlock, starvation and premature termination, run-

time failures due to out-of-range values, attempts to divide by

zero and lack of storage for dynamically allocated objects.

Software should detect and properly handle run time errors.

Software controls should assume the worst and prepare for it.

What undesirable states can the computer get to and how can

each of these states be prevented. A careful analysis of re-

sponses to failed or suspect sensors should also be made.

Software capable of real-time diagnosis of its own hardware

and sensors is very useful. Memory can be protected with

parity, error correcting code and read-only circuitry in mem-

ory. Messages received should be checked for accuracy, and

routes can be automatically changed when errors are de-

tected. Predefmed system exceptions and user defined fault

exceptions should be designed into application software.
Predefined exceptions can be raised by run-time systems.

The software should also have built-in or operating system

recovery procedures. Information for recovery includes

processor id, process name, data reference, memory loca-

tion, error type and time of detection.

(4) Software/Hardware Interfaces:

Computer timing problems and buffer overload problems
must be eliminated. If all alarms and sensors cannot be read

in one clock cycle of the Central Processing Unit (CPU)

errors may occur or alarms may be missed. Overloaded

buffers can result in CPU "lock-up."

Load balancing should be a part of operating system software
routines because failures are often caused by overloading one

or more processors in the system. This can be caused by an

increase in message traffic or the inability of a processor to

perform within time constraints, etc. Dynamic traffic time

sharing where message streams are distributed among identi-

cal processors with a traffic coordinator keeping track of the
relative load among processors is another potential tool to

support complex systems.

(5) Isolating Processes:

Systems for safety critical applications need to be separate

from everything else. System specifications often require

gathering data from hundreds of sensors, and performing all

sorts of non-critical tasks. Segregating these non-critical

tasks to a separate computer system will often improve as-

surances that safety critical functions will be not be disrupted

by defects in non-critical resources. Safety-critical modules
should be "firewalled."

For critical systems use proven hardware and technology.

Older computer systems and software that are "flight-proven"

and do the job should be chosen over newer computers

whose standards are rapidly evolving where critical applica-
tions are involved.

Analog interlocks on safety critical systems should be re-

placed with software interlocks only with the greatest of care.

A thorough, well-documented analysis of what would happen

with a computer failure and the system failure that the inter-

lock protects should also be made. An example of the prob-

lem of replacing mechanical interlocks with software inter-
locks involves a radiation therapy machine. An early model

of the therapy machine had a hardware interlock to prevent
radiation overdoses. The interlock was removed on a later

model and replaced with software logic. Several people were
killed when the machine overdosed them with radiation. The

problem was caused by the operator interface, poorly

documented data input procedures and inadequate safety pro-
cedures. The earlier model never experienced the problem

since the program did not control the interlock.13

In many cases, safety critical systems can have an analog

process (or a stand-alone computer) capable of taking over if

the primary computer fails. If a computer control fails on a

processplant,ananalogbackupsystem(whichwaspresum-
ablybeingcontrolledbythecomputer) could keep the proc-

ess running (though at less than optimum conditions). Alter-

natively, control actuators could go to a safe position if a

failure occurred. Usually, the process must be allowed to

proceed to some nominal conditions (e.g., partial cooling

water, partial product inflow into a process, etc.) before

shutting down.

Monitor the health of the backup systems and the ou_ut of

software control commands independently of the main control

computer. Have a separate computer performing health

checks on the main computer and on safety critical sensor

outputs.

Special tests should be done to verify the performance of

safety critical software. This includes testing to verify that

the software responds correctly and safely to single and mul-

tiple failures or alarms. The software should properly handle

operator input or sensor errors (e.g., data from a failed sen-

sor). Tests should be made to assure that the software does

not perform any unintended routines. Detection and action

upon failures with respect to entry into and execution of

safety-critical software components and the ability to receive
alarms or other inhibit commands should also be provided.

Formal methods can use abstract models and specification

languages to develop correct requirements. Logic engines

can be used to prove correctness of the requirements.

Lewis Research Center's (LeRC's) launch vehicle program

has for many years verified the software for each mission by

running the complete program in the mission simulation lab.
All of the mission constants and components are checked and
verified. LeRC has never lost a vehicle due to software

problems.

6.3 Other Improvements

The hardware/software system must also be integrated with

input sensors and signal conditioners (analog to digital
boards, etc.) and the output devices (e.g., servo-controlled

actuators). Reliability of all this hardware is also an issue.

Some basic approaches to total system performance are as
follows:

(1)Reliability:

The reliability and survivability of the electronic components
associated with the software control system can be improved

with proper protection of components from vibration, excess

heat and voltage and current spikes. Properly maintained

grounding and shielding also must be assured with mainte-

nance training and documentation. Having robust sensors,
actuators and interfaces will also contribute to a more reli-

able system. Sensor failure can cause wrong data to be proc-

essed. Even the fraying of cables has been linked with pos-
sible uncontrolled changes in aircraft flight surface actuation.

The reliability of computer controlled output devices (servo-

actuators, valves, relays, etc.) must be verified as well. The

output devices may also subject to noise problems. Error

recovery and restart procedures should be included in soft-

ware and properly tested.

Passive controls should be designed so that failures cause the

system to go to a safe state. If input commands or sensor

readings are suspect, the system should go to a safe condi-

tion. The latter should be done (as previously noted) with an

analog backup or an autonomous software module. The

autonomous software module should be in a separate backup

system.

Multiple Voting Systems (multiple computers running the

same task in parallel with independently written programs)

might help improve reliability. 14 Multiple computers with

software written for the same functional output but developed

independently is one way to handle the critical problem of

software getting to some condition that was never intended.

Systems should sense the occurrence of anomalies and alert

the operator. Health monitoring of the controlled system as

well as the computer itself, frequent self checks, etc, should

be included in the program.

Redundant systems need to have separate power sources and

locations (to avoid common mode failures). Use uninter-

rupted power supplies for critical software systems. Have

battery backup for as long as is needed to switch to manual

operation. Avoid a common power supply that can send a

surge to all devices at once or can shut off all devices at
once.

A distributed system can also be used to improve reliability.

The system can sense problems in one processor and will

transfer its work to another processor or system. Hardware

components degrade with time and represent the most impor-

tant factor in ensuring reliability of real-time systems.

Note however that the complexities of a distributed system

can cause new problems and possible reduce reliability. For

example synchronization and precision of numerical values

between programs and communications procedures can cause
errors. More resources are also consumed for coding and

testing and programs become larger (with more chance for

error).

(2) System/Sensors Interfaces:

The computer and sensor interfaces must be thoroughly tested

to prevent mechanical failures, intermittent contacts, connec-

tor problems and noise. Again, provisions for data out of

acceptable ranges must be made.

(3) RF Noise:

Radio Frequency (RF) noise problems can be avoided. Input

and output data should be validated before use. The software
should check for data outside of valid ranges and take appro-

priate action such as an alarm or system shutdown, etc.

Proper maintenance procedures and training in the removing

and replacing of grounding and shielding should be devel-

oped. The interaction of and possible need for separate ana-

log and digital grounds should also be investigated. Thorough

testing of the system in all anticipated environments should of

course be performed.

10

(4)ManufacturingandMaintenance:
The duplication, loading and maintenance of software must

be planned for and controlled. Proper procedures must be

developed to assure that the proper code is loaded on each

model of processor. Proper verification of all new compila-

tions of code must also be performed. Buggy compilers can
introduce defects. Subtle changes from one revision of an

operating system to another can cause subtle changes in

response to the same code. Procedures and requirements for

maintenance upgrades must also be made. The updated soft-

ware should be adequately tested and verified (to the same

level, extent and to the same requirements as the operating

software) for accuracy (performance), reliability, and main-

tainability. New software should be modularized and

uploaded as individual modules when maintenance is being

performed. Also, whenever possible, issue firmware changes
as fully populated and tested circuit cards (not as individual

chips).

7. SOFTWARE DEVELOPMENT TOOLS

There are a number of methods that can be used to analyze

and verify software.

Fig. 17. SOFTWARE ANALYSIS TOOLS

programming language but with a readable style to better
understand program logic. 17

State transition diagrams (STDs) are also a useful tool. STDs

are graphs that show the possible states of the system as

nodes and the possible changes that may take as lines. This

can highlight poor architecture or unnecessarily complex
computer code.18

Software Failure Mode Effects Analysis (FMEA) analyzes

what can go wrong with the software and what can go wrong

with the system itself. The FMEA should analyze whether or

not the system is fault-tolerant with respect to hardware fail-

ures and to make sure the system specifications are complete.

The actual failure of the computer hardware usually results in

a hard failure and the effects are easily identified. The effects

of failures handled by software may not be so clear. For

example, how does the software handle the loss of one piece

of sensor data or a recovery from a fault?

8. SOFTWARE SAFETY AXIOMS and SUGGESTIONS

These axioms are food for thought. They should be looked

at, read and reread. The principles behind them should be

thoroughly understood.

-Fault tree analysis

-Petri net analysis

-Hazards analysis

-Formal logic analysis
-Software failure modes and effect analysis

Some of these include:

Fault tree analysis can identify critical faults. Potential faults

or problems are identified and then all the conditions that can

lead to those faults are considered and diagrammed.

Petri net analysis provides a way of modeling systems

graphically. A Petri Net has a set of symbols that show

inputs, outputs and states with nodes that are either "places"

(represented by circles) or "transitions" (represented by

vertical lines). When all the places with connections to a
transition are marked, the net is "fired" by removing marks

from each input place and adding a mark to each place

pointed to by the transition (the output places). 15

Hazard analysis can also be performed on the system.

Formal methods for identifying hazards can be used to

evaluate software systems. 16

Formal logic analyzers are logic engines that can verify

specifications. Some source analyzers can reveal logic

problems in code and branching problems.

Pseudo codes are similar to programming languages but are

not compiled. They are used for program design and

verification. They have flow and naming notation of the

Fig. 18. SOFTWARE SAFETY AXIOMS

-Persons who design software should not write the code
and those who write the code should not do the testing.

-Accidents are caused by incomplete or wrong assump-
tions about the system or process being controlled.
Actual coding errors are less frequent perpetrators of
accidents.

-Unhandled controlled system states and environmental
conditions are a big cause of "software malfunctions."

-Lack of up-to-date professional standards in software
engineering and/or lack of use of these standards is a
root cause of many problems.

-Limit the changes to the original system specifications.

-It is impossible to build a complex software system to
behave exactly as it should under all conditions.

Fig. 19. SOFTWARE SAFETY AXIOMS (continued)

-Software safety, quality & reliability are designed in, not
tested in.

-Upstream approaches to software safety are most effec-
tive.

-Software alone is neither safe nor unsafe.

-Many software bugs are timing problems that are diffi-
cult to test for.

.software often fails because the software goes some-
where that the programmer does not think it can get to.

.software systems do not work well until they have been
used.

-Mathematical functions implemented by software are
not continuousfunctions but have an arbitrary number
of discontinuities.

11

Fig. 20. SOFTWARE SAFETY AXIOMS (continued)

Engineers believe one can design "black box tests" on
software systems without the knowledge of what is
inside the "box."

Keep safety critical systems as small and as simple as
possible; moving any functions that are not safety
critical to other modules.

Treat a software control system as a single point failure
(often in the past the software was just ignored).

Decide what you do not want to happen - make sure
your program can't get there.

Make sure your system is fault tolerant and that it can
recover from faults and instruction jumps.

Use independent verification and validation of software
(iv&v).

9. CONCLUSION

Software is now used in many safety-critical applications and

each system has the potential to be a single point failure or

zero fault tolerant (i.e., a single failure will cause failure of

the system or if the computer is controlling a hazardous

function, a single failure can cause a hazardous condition to

exist.

_.SW & HW
CONTROL

ELECTRO-
MECH.

SYS.

Fig. 21 -- Software Controls on Systems Are Often

Ignored

The potential problems with software are not well

understood. Computers controlling a system (this includes the

computer hardware, the software, the sensors and output

devices that direct the flow of energy) are not a black box

that can be ignored in safety, reliability and risk evaluation.

discontinuities in algorithms, whistles and bells,
more whistles and bells, system overload, HW failure,

sensor failure, rf interference, unstable & undocumented
programs, multiple languages, programmers do not

understand engineering system, sabotage, memoryless
batch programs, HW errors, HW voltage level anomalies,

__ SW & HW

L _ ="_s_yC_!_.v- CONTROL

Fig. 22 -- Software Controls on Systems Are a Single-

Point Failure

However, if handled properly and applied properly, the

use of software and hardware to control a system can be a

valuable design option.

There are many ways to improve the software development

process. Good communication, documentation, standardiza-

tion and configuration management benefit the software

development process. Correct and understandable require-

ments are also a major factor in proper software develop-

ment. Anticipating problems, proper error handling and

improving hardware reliability, help to improve confidence

in the system as well.

There are many ways to validate and improve software qual-

ity (and safety) and this .will be discussed in part II of this

tutorial -- Software Quality And The Design And Inspection

Process.

1 T. Halfhill, The Truth Behind the Pentium Bug, BYTEMagazine, March,
1995.

2Aviation Week and Space Technology, June 19, 1989.

3Space Shuttle Flight Software Development Pr0eesses, NASA.

4"F-22 Software on Track With Standard Process," Aviation Week and Space

Technology, July 24, 1995.

5 M. Norris and P. Rigby, Software Engineering Explained, Wiley, 1992.

6 j. Beatson, "Is America Ready to 'Fly by Wire'?," Washington Post, April,
1989.

7Michael Mecham, "Auto pilot Go-Around Key to CAL Crash," Aviation

Week and Space Technology, May 9, 1994.

8james R. Asker and Jeffrey M Lenorovitz, "Computer Woes Spoil

Clementine Flyby Plan," Aviation Week & Space Technology, May 16, 1994.

9M. Norris and P. Rigby Software Engineering Explained, Wiley, 1992.

10Space Shuttle Fli_,ht Software Development Processes, NASA.

11 Sharon Begley, "Mystery Stories at 10,000 Feet," Newsweek, July 26,
1993.

12Chenoweth and Schulmeyer, Proceedings of lEEE Conference on

Computer Assurance, IEEE Computer Software Assurance Conference,
COMPSAC 86, Washington, D.C., 1986.

13 N. Leveson, Safeware: system safety and computers, Addison-Wesley,
1995.

14While this concept is beneficial in theory, some studies suggest that

common sottware logic faults arise from common requirements. See the
article by John C. Knight and Nancy G. Levenson, "An Experimental

Evaluation of the Assumption of Independence in Multiversion
Programming," 1EEE Transaction on Software Engineering, Vol. SE-12, No.

1, January, 1986. Furthermore maintenance and configuration management

of this type of system is greatly complicated by having different active
versions of code.

15M. Norris and P. Rigby, Sgffware Engineering Explained, Wiley, 1992.

16 N. Leveson, Safeware: system safety and comouters. Addison-Wesley,
1995.

17 M. Norris and P. Rigby, Software Engineering Explained, Wiley, 1992.

18 M. Norris and P. Rigby, Software Engineering Explained, Wiley, 1992.

12

Fdrm Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burd.ert for this coUection of inforrrl_ion .Is esti .rr_ed to average 1 hour per response, lnc_din_ the time for rav..l_ng.lns, tru_:)fls, _ching ex_l_rdaIa _(_rc_l _
gathedng and maintaining the data needed, and co.mple!mg ano.rav.klwlng the collectS, of Intormation_ .8pno co_mmen_ ragar.omg ths ouroen e.stMmate .or_any omej___es,l_X_...

collection of Info_, including suggestions ,or reoucmg this ouroen, to Washington Heaoquaners uervces, iJ.erectoram ;or imorn_lon Upe_ ano Hepo_s, l_(_nersorl
Davis Highway. Suite 1204. Arlington, VA 22202-4302, and to the Office of Management and Buoget, Paperwork Heouction Project (070¢-0188), Washington, uu z .

1. AGENCY USE ONLY (Leave b/anlO 2. REPORT DATE

February 1997

4. TITLE AND SUBTITLE

Softwaro Design Improvements

Part 1: Software Benefits mad Limitations

s. Aurrme(s)

Vincent R. Lalli, Michael H. Packard, Tom Ziemianski

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSEES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

3. HIEPORTTYPE AND DATES COVERED

Te -hnical Memorandum

5. FUNDING NUMBERS

WU-323-93-03

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-10609

9. SPONSORING/MONITORING AGENCY NAME(S) AND AODRESS(ES)

National Aeronautics and Space Administration

Washington, I)C 20546-0001

10. SPONSORIN_NITORING
AGENCY REPORT NUMBER

NASA TM- 107402, Part I

IEEE-155NO897-5000

11. SUPPLEMENTARY NOTES

Prepared for The International Symposium on Product Quality & Integrity cosponsored by AIAA, ASQC/RD, ASQC/ED,

IEEE_S, IES,/IE, SAE, SOLE, SRE, and SSS, Philadelphia, Pennsylvania, January 13-19, 1997. Vincent R. l_alli,

NASA Lewis Research Center; Michael H. Packard, Raytheon Engineers and Constructors, 2001 Aerospace Parkway,

Brook Park, Ohio 44142; Tom Ziemianski, Texas Instruments Inc., Dallas, Texas (work funded by NASA Contract NAS3-

26764). Responsible person, Vincent R. Lalli, organization code 0510, (216) 433-2354.
12a. DISTRIBUTION/AVAILABILITY STATEFJENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Categories 33, 37, and 38

This publication is available from the NASA Center for AeroSpace Information, (301) 621 --0390.

13. ABSTRACT (Maximum 200 words)

Computer hardware and associated software have been used for many years to process accounting information, to analyze

test data and to perform engineering analysis. Now computers and software also control everything from automobiles to

washing machines and the number and type of applications are growing at an exponential rate. The size of individual

programs has shown similar growth. Furthermore, software and hardware are used to monitor and/or control potentially

dangerous products and safety-critical systems. These uses include everything from airplanes and braking systems to

medical devices and nuclear plants.The questionis: how can thishardware and software be made more reliable?Also,

how can software quality be improved? What methodology needs to be provided on large and small software products to

improve the design and how can software be verified?

14. SUBJECT TERMS

Software; Reliabilty; Problems; Safety; Improvement; Inspection; Axions

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

14

16. PRICE CODE

A03

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescrfoed by ANSI Std. Z39-18
298-102

